随着现代科学技术的飞速发展,机器人在医疗领域中的应用越来越广泛.近些年来,由于人们对机器人在医疗领域中应用的兴趣增加得如此迅速,以致很难提供一幅“静止”的图像来描述这一情况。机器人在医疗领域的发展越来越广,相信不久的将来,还会有更大的进展。

1、外科手术机器人
外科手术机器人的应用领域主要分为微创外科手术机器人和手术中影像引导医用机器人。达芬奇手术机器人是一种高级机器人平台,其设计的理念是通过使用微创的方法,实施复杂的外科手术。达芬奇手术机器人是当今最先进的微创外科治疗平台,它使外科手术的精度超越了人手的极限,对整个外科手术观念来说是一次革命性的飞跃,特别是泌尿外科,更成为微创手术的精英领域,病种适应非常广泛。
1.1微创外科手术机器人
微创外科手术(微创手术)即医用内窥镜手术,符合当今国际生物医学工程领域提出的少创和无创手术的发展趋势,得到了很大的发展。特别是近年来,微型机械电子系统(MEMS)研究的开展和深入,使得微小技术、微型系统获得迅速的发展,从而极大地促进了医疗用机器人的微型化、微观化,为研制进入人体内的医疗用微型机器人创造了条件。
日本东北大学目前正在研究制作一种机器人驱动内窥镜系统,他们利用微细加工技术,采用形状记忆合金驱动,研制适合于人体肠道或血管环境下动作的驱动装置。微小型驱动机器人携带光学成像、体内照明、前端物镜粘附物清除装置自动进入人体完成体内观察和治疗。他们还将进一步研制和开发体内自主行走式诊断治疗、体内微细手术、体内药物直接投放等功能。
上海交通大学仪器工程系目前在国家八六三高技术基金资助下研究全方向蠕动式机器人驱动内窥镜系统,通过电磁驱动方式由驱动源携带全套光学检测系统、钦激光手术等装置进入人体肠道,取代当前传统的医学内窥镜,适应无创和少创外科手术的发展趋势。
据最近的文献报道,虽然这项外科手术的革命一医学内窥镜技术革命已取得了不少成果,在各方面也已有很多突破,但目前还处于实验研究阶段,没有能够进入人体进行实用性诊疗,这主要是驱动器及可靠性方面的技术课题还没有得到很好的解决。日本医学机器人研究的一个重要目标是开发能在血管中进行诊断、监测和治疗作业的医用机器人系统。
此微型机器人是另一意义上的医用内窥镜,该系统与人体体外是无线连接,而由医生用注射器将其推入人体内部,然后由该系统所携带的微生物传感器对人体各组织进行检测,并把信号输入到系统信息处理中心进行分析处理,当发现有病变的组织时,该微型机器人系统的控制中心就发出信号,自动释放出其系统内所携带的微型手术机器人,对病变组织细胞进行直接手术治疗或注射药物。
由于该微型机电系统要求很高,需要在仅有不到一毫米的空间内装入微驱动器、微传感器及信号处理器等,而且无线传输目前还不能达到充足的能量,所以该系统还有待于进一步完善,需要解决微型器件的加工制造、装配及无线通信和遥控技术、无线能量传输等关键技术难点。
微创外科手术机器人的另外一个应用领域是对一些医院临床中使用的医疗器械进行改进使其精确度、自动化程度更高。由于近年来机械电子技术及其它各项技术的发展使该领域也得到了很大的发展。随着普通医疗器械的精度和可操作程度的提高,外科手术的成功性同时加大,从另一方面体现了微创外科手术的要求。
1.2影像引导外科手术
影像引导外科手术主要包括矫形外科手术、脊柱外科手术、神经外科手术等。其最典型的影像引导机器人外科手术是耽关节修复手术的自动植入手术,手术所用的就是人工关节置换手术机器人。还有一个典型应用例子是脑神经外科中穿刺插管的诱导手术,由脑手术穿刺机器人来进行穿刺手术,用机器人控制中心借助于X一CT计算出实验数据,然后由穿刺机器人执行穿刺手术。影像引导机器人外科手术的发展关键是机构的控制,虚拟现实环境和先进人机交换技术的发展。
2、医疗康复机器人
从八十年代开始,医疗康复机器人有了很大发展,其应用范围已扩展到人们生活的各个领域,如机器人动作执行系统(机械手)、智能型轮椅、家庭日常生活和职业用生活护助及作业辅助型机器人等。
2.1机械手
医疗康复领域的一个重要应用场合就是恢复四肢残废者手和腿实现象正常人一样的功能,即在残废者和周围环境间安装上一机械假肢作为媒介,使前者能象正常人一样用意识控制手足活动,执行各种任务。机械手包括手足型和搬运及移动型。手足型机械手包括肌电控制前臂假手、能步行及上下楼梯的动力假腿和具有知觉的能动假手等。搬运及移动型机器人包括患者升降机、抱起机器人、输送及转送机器人和移动升降器等。随着人们生活水平的提高,人类的平均寿命持续增长,人类社会向老龄化社会发展,与此相适应的康复机器人的应用领域也逐渐向为老年人服务而倾斜,其应用前景十分广阔。
2.2智能轮椅
智能轮椅作为下肢残废者和失去行走能力的老年人的主要交通机械,近年来发展非常迅速。轮椅已由过去的单纯依靠人力操作发展到现在的智能轮椅。智能轮椅运用了各项先进技术,从机械学领域的机构设计、各类传感器技术的应用、信息处理中心的高效控制到人机技术等方面充分考虑到使用者的方便和需要。因此,轮椅已变成了一种高度自动化的移动机器人。
日本东京大学为了帮助失去行走能力的老年人而开发了一种自动操作的智能轮椅。该系统适合于在室内环境下工作,由天花板上的灯光标识器来实现系统的引导(灯光标识器的位置按一定的要求布置),轮椅的顶部装有CCD摄像机(通过一大视角的透镜),由CCD摄像机对天花板上灯光标识器位置的检测来控制驱动轮椅的运动。为了检测前进道路上的障碍物,轮椅前端装有超声波检测器。如在行进过程中超声波检测器检测到有障碍物时,控制中心会立即发出相应转变或停止的控制信号。实验结果表明该智能轮倚系统能改善老年人的生活质量,减少看护者的负担。
2.3医院机器人系统
医院机器人系统主要是医院内部搬运机器人,其主要功能是运送食物、药品及一些医疗器械、病人病历档案等,它不同于一般的位置固定的生产装配场合中应用的工业机器人。国外研究的一种叫“HelpMater”的机器人已经在医院内使用,它能够24小时高效工作。医院工作人员能把医院内走廊,电梯的几何和断层图象信息输入到该机器人的控制系统内使其能自动工作。另外日本的机械工程实验室已在研究一种能提升病人的机器人,该机器人能够将病人从病床上提升起来并把其运送到医院卫生间、食堂等其它地方。但是该系统所需的各项技术如能量供应、人机交互系统等还有待于进一步解决和完善。
3、全自动智能灯检机
注射液里的玻璃屑、纤维、白点等异物,严重威胁人体健康。而人工检测结果的不稳定,长期困扰着我国医药工业。经过10多年研究,湖南大学和湖南千山制药机械股份有限公司在国内首创的聪明机器可完全取代人工。其中,用于大容量注射剂的全自动智能灯检机为世界首创。
在今天召开的省科技奖励大会上,“医药自动化生产线产品质量视觉检测机器人技术及应用”项目获得省技术发明奖一等奖。据千山药机董事长刘祥华介绍,系列智能灯检成套装备已推广到国内外120多家制药企业,检测精度达到50微米,检测速度可达到36000瓶/小时。
灯检是药品生产中一道至关重要的工序。目前,国内药厂普遍采用人工灯检的方式,即工人将线上产品逐一放置到背景灯箱前观测,依靠肉眼来判断液体中是否存在可见异物。不仅效率低下,而且由于劳动强度大,视力受损大,工人看走眼的时候并不少,难以保证药品的质量。以机器取代人工灯检,迫在眉睫。
在王耀南教授的带领下,项目组打破国外技术封锁,在精密机构设计与复杂建模、多手眼协同控制、高速高精度图像获取与检测技术等方面取得了重大突破,一举攻克了大型医药自动化生产线高速、高精度、高可靠性的自动化检测与控制关键技术难题,实现了中国创造。